Quantum yield in blue-emitting anthracene derivatives: vibronic coupling density and transition dipole moment density.

نویسندگان

  • Motoyuki Uejima
  • Tohru Sato
  • Daisuke Yokoyama
  • Kazuyoshi Tanaka
  • Jong-Wook Park
چکیده

A theoretical design principle for enhancement of the quantum yield of light-emitting molecules is desired. For the establishment of the principle, we focused on the S1 states of blue-emitting anthracene derivatives: 2-methyl-9,10-di(2'-naphthyl)anthracene (MADN), 4,9,10-bis(3',5'-diphenylphenyl)anthracene (MAM), 9-(3',5'-diphenylphenyl)-10-(3'',5''-diphenylbiphenyl-4''-yl) anthracene (MAT), and 9,10-bis(3''',5'''-diphenylbiphenyl-4'-yl) anthracene (TAT) [Kim et al., J. Mater. Chem., 2008, 18, 3376]. The vibronic coupling constants and transition dipole moments were calculated and analyzed by using the concepts of vibronic coupling density (VCD) and transition dipole moment density (TDMD), respectively. It is found that the driving force of the internal conversions and vibrational relaxations originate mainly from the anthracenylene group. On the other hand, fluorescence enhancement results from the large torsional distortion of the side groups in the S1 state. The torsional distortion is caused by the diagonal vibronic coupling for the lowest-frequency mode in the Franck-Condon (FC) S1 state, which originates from a small portion of the electron density difference on the side groups. These findings lead to the following design principles for anthracene derivatives with a high quantum yield: (1) reduction in the electron density difference and overlap density between the S0 and S1 states in the anthracenylene group to suppress vibrational relaxation and radiationless transitions, respectively; (2) increase in the overlap density in the side group to enhance the fluorescence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Investigation on Naphthoquinone Derivatives :Nuclear Magnetic Resonance (NMR) and Quantum mechanic

Naphthoquinones are natural aromatic compounds that can be discovered in various plant families. In recent times a diversity of biological activities of these compounds has been reported. In most cases, these pharmacological activities are related to redox and acid-base properties, which can be modulated synthetically by modifying the substituents attached to the 1, 4- naphthoquinone ring, in o...

متن کامل

Structural Characteristics and Reactivity Relationship of some Thiophene Derivatives

ABSTRACT The application of many hetero-aromatic compounds in pharmaceutical and dye industries make the theoretical study of their dipole moment (µ) oscillator strength (f) and other photo-physical properties worthwhile. These properties determine the solubility of many compounds; predict the relationship between their structures, properties and performance. The f, µ, α, transition dipole mome...

متن کامل

Quantum chemical studies on adsorption of imidazole derivatives as corrosion inhibitors for mild steel in 3.5 NaCl solution

Adsorption of benzimidazole, 2-methylbenzimidazole and 2-aminobenzimidazole on mild steel in 3.5 NaCl solution was studied using density function theory DFT calculations. In this regard, charge transfer resistance Rct and double layer capacitance Cdl obtained by electrochemical impedance spectroscopy EIS were used to calculate surface coverage and to build prediction models. When prediction mod...

متن کامل

Vibronic coupling in asymmetric bichromophores: theory and application to diphenylmethane-d(5).

A theoretical model based on Fulton and Gouterman dimer Hamiltonian [J. Chem. Phys. 35, 1059 (1961)] is used to understand the jet cooled spectra of partly deuterated diphenylmethane (DPM-d5), reported in adjoining paper by Zwier and co-workers ["Vibronic coupling in asymmetric bichromophores: Experimental investigation of diphenylmethane-d5," J. Chem. Phys. 141, 064316 (2014)]. The model is ex...

متن کامل

Theoretical studies on corrosion inhibition of N-aroyl-N’-aryl thiourea derivatives using conceptual DFT approach

In this paper, quantum chemical parameters at density functional theory (DFT) B3LYP/6-31G** (d,p) level of theory were calculated for three organic corrosion inhibitors [N-benzoyl-N-(p-aminophenyl) thiourea, N-benzoyl-N-(thiazole) thiourea and N-acetyl-N-(dibenzyl) thiourea. The calculated molecular descriptors such as the HOMO, LUMO, dipole moment, chemical potential (μ), chemical hardness (ղ)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 27  شماره 

صفحات  -

تاریخ انتشار 2014